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Klebsiella pneumoniae is emerging as an important nosocomial pathogen due to its rapidly increasing multidrug resistance,
which has led to a renewed interest in polymyxin antibiotics, such as colistin, as antibiotics of last resort. However, hetero-
resistance (i.e., the presence of a subpopulation of resistant bacteria in an otherwise susceptible culture) may hamper the
effectiveness of colistin treatment in patients. In a previous study, we showed that colistin resistance among extended-
spectrum-beta-lactamase (ESBL)-producing K. pneumoniae isolates emerged after the introduction of selective digestive
tract decontamination (SDD) in an intensive care unit (ICU). In this study, we investigated heteroresistance to colistin
among ESBL-producing K. pneumoniae isolates by using population analysis profiles (PAPs). We used whole-genome se-
quencing (WGS) to identify the mutations that were associated with the emergence of colistin resistance in these K. pneu-
moniae isolates. We found five heteroresistant subpopulations, with colistin MICs ranging from 8 to 64 mg/liter, which
were derived from five clonally related, colistin-susceptible clinical isolates. WGS revealed the presence of mutations in the
lpxM, mgrB, phoQ, and yciM genes in colistin-resistant K. pneumoniae isolates. In two strains, mgrB was inactivated by an
IS3-like or ISKpn14 insertion sequence element. Complementation in trans with the wild-type mgrB gene resulted in these
strains reverting to colistin susceptibility. The MICs for colistin-susceptible strains increased 2- to 4-fold in the presence
of the mutated phoQ, lpxM, and yciM alleles. In conclusion, the present study indicates that heteroresistant K. pneumoniae
subpopulations may be selected for upon exposure to colistin. Mutations in mgrB and phoQ have previously been associ-
ated with colistin resistance, but we provide experimental evidence for roles of mutations in the yciM and lpxM genes in
the emergence of colistin resistance in K. pneumoniae.

Klebsiella pneumoniae is emerging as an important nosocomial
pathogen due to rapidly increasing resistance to practically all

currently available antibiotics, in particular carbapenems (1, 2).
This Gram-negative opportunistic pathogen can cause wound
and urinary tract infections and other life-threatening, hospital-
acquired infections, such as pneumonia, bacteremia, and postop-
erative meningitis (3, 4). Due to increasing multidrug resistance
(MDR) among Gram-negative bacteria, including K. pneumoniae,
and the lack of novel antibiotics to treat infections caused by MDR
Gram-negative bacteria (5), there is a renewed interest in the an-
tibiotic colistin as a therapy of last resort (6).

Colistin (polymyxin E) is a cationic polypeptide with a lipid
tail which targets anionic lipopolysaccharide (LPS) molecules in
the outer membranes of Gram-negative bacteria, introducing
changes in the permeability of the membrane which lead to leak-
age of cell contents and, finally, cell death (7, 8). Resistance to
colistin among Gram-negative bacteria in clinical isolates was re-
ported recently (9–11). Several strategies are employed by bacteria
to gain resistance to colistin, including LPS modifications, partic-
ularly modifications of lipid A, the use of efflux pumps, and over-
expression of outer membrane proteins (12). Resistance to colis-
tin in clinical isolates may go undetected when traditional in vitro
antibiotic susceptibility testing is used, because of heteroresis-
tance, which denotes the presence of subpopulations of bacterial
cells with higher levels of antibiotic resistance than those of the
rest of the population in the same culture (13). This phenomenon
was described recently for Gram-negative organisms including

Pseudomonas aeruginosa (14), Acinetobacter baumannii (15, 16),
and Enterobacter cloacae (17).

In a previous study (18), we showed that colistin resistance
among extended-spectrum beta-lactamase (ESBL)-producing K.
pneumoniae isolates emerged after exposure to colistin as part of
selective digestive tract decontamination (SDD) in an intensive
care unit (ICU), and we postulated that this may be explained by
the presence of heteroresistant subpopulations of the colistin-sus-
ceptible MDR strains.

In the present study, the existence of colistin-resistant sub-
populations among ESBL-producing K. pneumoniae isolates was
investigated. Through whole-genome sequencing (WGS) and
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complementation of mutated alleles in trans, the roles of muta-
tions in resistance to colistin in K. pneumoniae were determined.

MATERIALS AND METHODS
Clinical data and bacterial isolates. K. pneumoniae isolates were collected
during a study on the emergence of colistin resistance in Enterobacteria-
ceae before and after the introduction of SDD in an ICU (18). Briefly,
SDD, a topical mixture of antibiotics, including tobramycin, colistin, and
amphotericin B at doses (given four to eight times daily) of 80, 100, and
500 mg, respectively, was introduced in 2002 to control an outbreak of
ESBL-producing K. pneumoniae in an ICU. Reexamination of stored iso-
lates from surveillance and clinical cultures from ICU patients before and
after the start of SDD revealed that all tested isolates obtained before the
start of SDD were colistin susceptible, whereas 71% of isolates from cul-
tures obtained thereafter were resistant. Molecular typing of the isolates
revealed that most of them were clonally related (18).

In this study, we included a total of 13 strains: eight genetically
related ESBL-producing K. pneumoniae clinical isolates (one isolate per
patient) with known colistin MICs and five heteroresistant subpopu-
lations of these isolates. Genetic relatedness was determined by use of
the DiversiLab system (bioMérieux, Marcy l’Etoile, France) according
to the manufacturer’s instructions. The eight clinical isolates included
six colistin-susceptible isolates, one of which was obtained before the
start of SDD and five thereafter, and two colistin-resistant isolates
obtained after the start of SDD. The six colistin-susceptible isolates
and one of the two colistin-resistant isolates were genotypically iden-
tical based on DiversiLab typing.

K. pneumoniae ATCC 700603 (ATCC, Manassas, VA) was included as
a colistin-susceptible reference strain. The identities of all isolates were
confirmed by matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF) analysis according to the manufactur-
er’s instructions, and strains were stored at �80°C before the investiga-
tions described in this study.

Antibiotic susceptibility testing. Routine antimicrobial susceptibility
testing was performed by use of a Vitek 2 Advanced Expert system and
Etest (bioMérieux, Marcy l’Etoile, France), using the European Commit-
tee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (http:
//www.eucast.org/clinical_breakpoints). The presence of ESBLs was de-
termined with the double-disk synergy test (19). The MICs of colistin
against the K. pneumoniae strains were determined by broth microdilu-
tion testing (http://www.eucast.org/guidance_documents) using cation-
adjusted Mueller-Hinton broth (MHCB). Determination of the colistin
MICs of electrotransformed strains was performed with MHCB supple-
mented with 10 mg/liter tetracycline.

PAPs. To investigate the presence of colistin heteroresistance, popu-
lation analysis profiles (PAPs) were determined for two replicates by spiral
plating 50-�l aliquots of the starting bacterial cell suspension (corre-
sponding to a 0.5 McFarland standard for K. pneumoniae cultures grown
on blood agar plates for 24 h at 37°C; approximately 108 CFU/ml) on
Mueller-Hinton agar plates with or without colistin sulfate (0.5, 1, 2, 3, 4,
5, 6, 8, and 10 mg/liter; Sigma-Aldrich, Zwijndrecht, The Netherlands) as
described by Li et al. (20). After 24 h of incubation at 37°C, the number of
colonies was counted. Colistin heteroresistance was defined as the pres-
ence of a colistin-susceptible isolate with a colistin MIC of �2 mg/liter in
which detectable colistin-resistant subpopulations were able to grow in
the presence of �2 mg/liter colistin (20). The detection limit of colistin-
resistant subpopulations was 20 CFU/ml.

Genome sequencing and assembly. Genomic DNAs of K. pneu-
moniae isolates were isolated from overnight cultures grown in Luria
broth at 37°C with shaking at 250 rpm by use of a Wizard Genomic DNA
purification kit (Promega, Madison, WI) according to the manufacturer’s
instructions. Sequence libraries were prepared with a Nextera XT kit
(Illumina, San Diego, CA) used according to the manufacturer’s instruc-
tions. Libraries were sequenced on an Illumina MiSeq system with a 500-
cycle (2 � 250 bp) MiSeq reagent kit v2. High-throughput sequence

(HTS) data were analyzed for quality with FastQC (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc/), and raw 2- by 250-bp
paired-end reads were filtered with Nesoni 0.109 (http://github.com
/Victorian-Bioinformatics-Consortium/nesoni). De novo genome assem-
bly was performed with SPAdes 2.5.1 (21), with k-mers 25, 35, 45, 57, and
69, using the following cutoffs for the minimum contig/scaffold: a size of
500 bp and average nucleotide coverage (10-fold).

Phylogenetic analysis. Publicly available WGS sequence data for 25 K.
pneumoniae strains were downloaded from the NCBI databases in Febru-
ary 2016. The strains used in phylogenetic analysis were selected to cover
all K. pneumoniae clades, as previously determined by Holt et al. (22). For
strains for which only raw sequence reads were available, assemblies were
generated with SPAdes 2.5.1 (21), as described above. To ensure consis-
tent gene prediction and annotation of all 38 genomes in this study, all
genome sequences were reannotated with PROKKA v1.10, using the de-
fault settings (23). To identify the core genome of these strains, first an
all-against-all protein BLAST sequence similarity search of annotated and
translated gene sequences was performed with default settings, except for
an E value of 1e�05. Based on the protein BLAST output, orthologous
groups were determined and clustered using OrthAgogue v1.0.3 (24) (set-
tings -u and -o 50) and MCL v14-137 (25) (settings -I 1.5), respectively.
The nucleotide sequences of orthologous groups containing exactly one
representative protein from each of the K. pneumoniae genomes were
extracted and then aligned using MUSCLE v3.8.31 (26). Gaps were re-
moved from each alignment by using trimAl v1.6 (27), resulting in align-
ments of equal length (core genome alignments) which were then concat-
enated. Subsequently, Parsnp v1.2 (28) (settings -r !, -c, and -C 1000) was
used to construct a maximum likelihood phylogenetic tree from the vari-
able positions in these core genome alignments. The tree was midpoint
rooted and visualized using FigTree software (v1.4.2; http://tree.bio.ed.ac
.uk/software/figtree).

Identification of SNPs and indels. Mapping of the Nesoni-filtered
reads against the complete genome sequence of K. pneumoniae MGH
78578 (NCBI accession number NC_009648) was performed with
Bowtie2 v2.2.0 (29) (settings -X 1200, and -a). Genomic repeats were
removed from the analyses by filtering out reads that mapped to mul-
tiple positions in the K. pneumoniae MGH 78578 genome. To call single
nucleotide polymorphisms (SNPs) and insertions and deletions (in-
dels), SAMtools 0.1.18 (30) was used with the following settings: Q
score of �50, mapping quality of �30, mapping depth of �10 reads,
consensus of �75% to support a call, and �1 supporting reads in each
direction.

Multilocus sequence typing (MLST) and identification of antibiotic
resistance genes. Sequence types of the isolates were determined by sub-
mitting the genome assemblies to MLST, version 1.8 (31). Antibiotic re-
sistance genes in the genome assemblies were identified by ResFinder v2.1
(32).

Complementation in trans. The genes that were mutated in the colis-
tin-resistant K. pneumoniae strains were amplified from both the suscep-
tible and resistant strains by PCR using 2� Phusion HF master mix
(Thermo Scientific, Landsmeer, The Netherlands) and the primers listed
in Table S1 in the supplemental material. The amplified fragments were
cloned into the PCR-Trap cloning system (GenHunter, Nashville, TN),
and the resulting plasmids (encoding resistance to tetracycline) were
transformed into electrocompetent colistin-susceptible or -resistant K.
pneumoniae strains by electroporation. The cloned amplicons were se-
quenced to ensure the absence of errors introduced during PCR (Macro-
gen Europe, Amsterdam, The Netherlands). Transformants were selected
by overnight incubation at 37°C on Luria agar supplemented with 10
mg/liter of tetracycline. The lacZ gene fragment encoding the LacZ �-pep-
tide was used as a control insert.

Accession number(s). Sequence data from this study were depos-
ited in NCBI’s Short Read Archive (SRA) under accession number
SRA354747.
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RESULTS
Antimicrobial susceptibility and colistin heteroresistance. An
overview of the 13 K. pneumoniae strains included in this study is
listed in Table 1; these strains included eight clinical isolates and
five heteroresistant subpopulations. After retesting of antibiotic
susceptibilities and confirmation of the presence of the ESBL phe-
notype by the double-disk synergy test, seven of the eight initially
ESBL-producing K. pneumoniae clinical isolates were again found
to be ESBL positive (isolate 3-CR lost the ESBL phenotype). None
of the strains was resistant to carbapenem antibiotics. The six
colistin-susceptible isolates had colistin MICs ranging from 1 to 2
mg/liter, and the two colistin-resistant strains had colistin MICs of
16 and 64 mg/liter.

PAPs revealed the presence of heteroresistance in five clinical
isolates (Table 1) (isolates 4-DS, 6-ES, 8-FS, 10-GS, and 12-HS)
initially considered colistin susceptible based on MICs ranging
from 1 to 2 mg/liter. Subpopulations of these colistin-heteroresis-
tant isolates grew in the presence of colistin at concentrations of 3
to 10 mg/liter (Fig. 1). The MICs for the resistant subpopulations
5-DR, 7-ER, 9-FR, 11-GR, and 13-HR were 32, 48, 16, 8, and 64
mg/liter, respectively (Table 1). The proportion of resistant colo-
nies was on the order of 10�6. The colistin-susceptible reference
strain ATCC 700603 survived in the presence of up to 0.5 g/liter
colistin sulfate, and no heteroresistant subpopulations were ob-
served.

Phylogenetic analysis of colistin-susceptible and colistin-re-
sistant K. pneumoniae isolates. A phylogenetic tree (Fig. 2A) for
K. pneumoniae was generated based on the core genome sequence
of 25 publicly available K. pneumoniae sequences and the 13 se-
quenced genomes of the K. pneumoniae isolates (Table 1). The
core genome consisted of 2,637 orthogroups, with a total align-
ment length of 2,013,123 bp and 209,626 polymorphic sites. The
core genome-based phylogenetic tree recapitulated the previously
observed population structure of K. pneumoniae sensu lato, which
includes Klebsiella quasipneumoniae (clade KpII) and Klebsiella
variicola (clade KpIII) (22, 33, 34). Seven of the eight clinical iso-
lates from the nosocomial outbreak were closely related to each
other and clustered in the K. pneumoniae (KpI) clade. A single

colistin-resistant isolate (3-CR) was assigned to clade KpIII and
therefore appeared to be unrelated to the other isolates from the
outbreak. All other strains from the outbreak (seven clinical iso-
lates and five heteroresistant subpopulations) had the same se-
quence type, i.e., ST-43. These data confirm the previously re-
ported existence of an outbreak with closely related K.
pneumoniae isolates in an ICU (18).

Although the isolates belonged to the same sequence type, a
repertoire of distinctly different antibiotic resistance genes was
observed (Fig. 2B). The isolates carried several antibiotic resis-
tance genes, including aminoglycoside resistance genes and �-lac-
tam resistance genes.

Mutations associated with colistin resistance. SNPs and in-
dels were determined for all paired colistin-susceptible and colis-
tin-resistant isolates. In addition, we determined whether full-
length copies of the mgrB and phoQ genes were present in the

TABLE 1 Characteristics of ESBL-producing K. pneumoniae isolatesa

Isolate identifier Yr of isolation
Colistin
susceptibility

Clonality
(sequence type)

Colistin MIC
(mg/liter)

Mutation

mgrB yciM phoQ lpxM

1-AS 2002 S ST-43 2
2-BR 2004 R ST-43 64 IS3-like insertion
3-CR 2007 R ST-1423 16 ND
4-DS 2002 S ST-43 1
5-DR R 32 ISKpn14 insertion
6-ES 2003 S ST-43 2
7-ER R 48 V43G
8-FS 2003 S ST-43 2
9-FR R 16 A21S
10-GS 2005 S ST-43 2
11-GR R 8 V30G
12-HS 2006 S ST-43 4
13-HR R 64 4.2-kb deletion
a Isolate identifiers consist of unique numbers used in Fig. 1 and 2; letters indicate the code for the patient and whether the strain was susceptible (S) or resistant (R) to
colistin. The isolate from patient A was obtained before the introduction of SDD in the ICU, and the remaining seven were obtained thereafter. Clonality was determined
by phylogenetic analysis. MICs were determined by the broth microdilution method. The different SNPs, a deletion, and the inactivation of genes due to IS element
insertions are indicated in the mutation columns. Heteroresistant strains are indicated with shading. ST, sequence type; ND, not determined.

FIG 1 Population analysis profiles indicating colistin heteroresistance. Pop-
ulation analysis profiles are shown for five colistin-susceptible isolates after
exposure to colistin sulfate. The y axis indicates the number of colonies on
Mueller-Hinton agar plates, and concentrations of colistin sulfate are shown
on the x axis.
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isolates, as mutations leading to deletion or inactivation of these
genes are a common cause of colistin resistance in K. pneumoniae
(12, 35–39).

A limited number (1 to 4) of SNPs (see Table S2 in the supple-
mental material) and indels (see Table S3) distinguished the out-
break isolates. In comparisons of paired colistin-susceptible and
colistin-resistant strains originating from the same patients, we
identified mutations in mgrB that led to disruption of the gene in
three colistin-resistant isolates (2-BR, 5-DR, and 13-HR). The
event that led to the inactivation of mgrB was different for each
strain. In strain 2-BR, an IS element (IS3-like) was inserted into
mgrB. In strain 5-DR, the element ISKpn14 disrupted mgrB. Strain
13-HR had a 4.2-kb deletion including the mgrB gene. In all other
colistin-resistant strains, mgrB was not mutated, meaning that
other mutations must have led to the colistin resistance pheno-
types of 7-ER, 9-FR, and 11-GR.

Interestingly, in these isolates, nonsynonymous SNPs were

identified in genes that had predicted roles in outer membrane
biosynthesis. Since the outer membrane is the main target of colis-
tin, mutations in genes involving outer membrane biosynthesis
may contribute to colistin resistance. In the strains from patient E,
the only SNP difference between the colistin-susceptible (6-ES)
and colistin-resistant (7-ER) isolates was a nonsynonymous SNP
causing a V43G amino acid substitution encoded within the yciM
gene. A mutation in phoQ, resulting in an A21S amino acid
change, was identified in the colistin-resistant isolate 9-FR. The
colistin-susceptible and colistin-resistant strains from patient G
(10-GS and 11-GR, respectively) differed from each other by only
2 SNPs. One of these SNPs mapped to the lpxM gene, causing a
V30G substitution.

Mutations in mgrB, yciM, phoQ, and lpxM contribute to
colistin resistance. To verify whether the IS element insertions
and amino acid substitutions identified by WGS contributed to
colistin resistance, the colistin-susceptible and -resistant strain
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FIG 2 Phylogenetic tree and antibiotic resistance genes of K. pneumoniae strains. (A) The phylogenetic tree represents a concatenated alignment of 2,637
core orthogroups, with a combined length of 2,013,123 bp and 209,626 polymorphic sites, of 38 K. pneumoniae strains. The strains sequenced as part of
this study are highlighted in color (orange, colistin-susceptible isolates; and blue, colistin-resistant isolates). (B) Antibiotic resistances detected in the K.
pneumoniae strains that were sequenced as part of this study. Classes of antibiotic resistance genes are indicated as follows: A, aminoglycoside resistance
genes; B, �-lactam resistance genes; C, chloramphenicol resistance genes; Q, quinolone resistance genes; S, sulfonamide resistance genes; and T,
trimethoprim resistance genes.
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pairs were complemented in trans with the wild-type and mu-
tated genes. Transformation of the strains with a control plas-
mid containing the lacZ gene did not alter the MIC of colistin
for any strain. Complementation in trans with plasmids har-
boring the parental mgrB gene resulted in a reversal toward
colistin susceptibility in isolates 2-BR and 5-DR (Fig. 3). Com-
plementation in trans for the 12-HS and 13-HR pair was not
performed due to difficulties in cloning the 4.2-kb deleted re-
gion spanning mgrB. Complementation with the mutated
forms of phoQ, yciM, and lpxM resulted in decreased suscepti-
bility to colistin. Electrotransformation of the colistin-suscep-
tible strain 6-ES with a plasmid containing the mutated yciM
gene resulted in a 3-fold increase in the MIC of colistin. The
phoQ and lpxM mutations resulted in a 4-fold increased MIC of
colistin for strain 8-FS and a 2-fold increased MIC of colistin
for strain 10-GS, respectively. These observations indicate that
mutations in yciM, phoQ, and lpxM are dominant when present
in trans with the corresponding wild-type alleles, resulting in a
colistin resistance phenotype. Because the deletions and inac-
tivations of mgrB are loss-of-function mutations, they are re-
cessive in the presence of the intact mgrB gene.

DISCUSSION

In a previous study, we showed that prolonged use of colistin as
part of SDD in an outbreak setting resulted in the emergence of
colistin resistance among ESBL-producing K. pneumoniae clinical
isolates (18). The main finding of the present follow-up study is
that heteroresistance among these apparently susceptible isolates
forms a reservoir for the emergence of colistin resistance during
treatment.

Heteroresistance has been recognized in both Gram-posi-
tive and Gram-negative bacteria and is a phenomenon where
subpopulations of seemingly isogenic bacteria exhibit a range
of susceptibilities to a particular antibiotic (13). Heteroresis-
tance can be intrinsic or acquired. Intrinsic heteroresistance

occurs without preexposure to the antibiotic, but heteroresis-
tance may also be acquired or induced after initial exposure to
antibiotics (13). Heteroresistance may have an impact on the
outcome of clinical infection, particularly because its detection
may be difficult by routine microbiology susceptibility testing
(40). The PAP method used in the present study is considered
the gold standard for determining heteroresistance (13). Phy-
logenetic analysis confirmed the clonality of all clinical isolates
(excluding 3-CR). However, the absence of overlapping SNPs
between clonal colistin-resistant isolates, isolated from differ-
ent patients over a time span of 4 years, argues in favor of
acquired, de novo resistance in individual strains under SDD
use, rather than selection of preexisting mutants or transmis-
sion of the resistant strains between patients.

Although heteroresistance has previously been described for K.
pneumoniae (41, 42), data on the molecular basis of colistin resis-
tance in this species are scarce. Studies have recently shown that
mutations in the genes encoding the PhoPQ two-component sys-
tem and inactivation of the mgrB gene are important pathways by
which K. pneumoniae can acquire resistance to colistin (43). In the
present study, mutations in phoPQ and mgrB were found in four
of the six analyzed isolates.

Mutations in the phoQ gene are a common mechanism by
which Gram-negative bacteria, including K. pneumoniae, gain re-
sistance to colistin (12, 38, 39). PhoQ is a sensor histidine kinase
which, together with its cognate response regulator, PhoP, forms a
two-component system (2CS). PhoPQ is activated under a variety
of conditions, including low pH, low concentrations of Mg2�, and
the presence of antimicrobial peptides, including colistin. Activa-
tion of PhoPQ leads to the expression of genes that modify LPS in
a variety of ways, including deacylation of lipid A or modification
of lipid A by 4-amino-4-deoxy-L-arabinose, leading to colistin re-
sistance (12). We found that a mutation in phoQ resulting in an
amino acid change (A21S) in the sensor domain of PhoQ which
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FIG 3 Experimental validation of the roles of identified mutations in colistin resistance. Wild-type and mutated mgrB, yciM, phoQ, and lpxM alleles were cloned
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leads to colistin resistance was dominant over the nonmutated
copy of phoQ. Notably, a mutation in Salmonella phoQ, resulting
in a threonine-to-isoleucine change at position 48, in the sensor
domain of the PhoQ protein, was also found to be dominant, as it
constitutively increased phosphorylation of the response regula-
tor PhoP (44, 45). A similar mechanism may explain why the
phoQ mutation of Klebsiella pneumoniae strain 9-FR is dominant.
Several studies have recently shown that inactivation of the mgrB
gene, which encodes a negative regulator of the 2CS PhoPQ,
causes colistin resistance (36–39). The inactivation or deletion of
mgrB leads to higher activity of PhoPQ, which in turn activates the
pmrHFIJKLM operon, which is responsible for modification of
lipid A.

The mgrB and phoPQ genes were not mutated in the remain-
ing two colistin-resistant isolates. In the heteroresistant strain
from patient E, a mutation leading to an amino acid substitu-
tion encoded within the yciM gene was found. In Escherichia
coli, yciM contributes to cell wall integrity by regulating LPS
biosynthesis (46, 47), and a deletion in yciM leads to decreased
susceptibility to colistin (48). It is possible that the mutation in
yciM in K. pneumoniae increases LPS production, leading to
higher levels of LPS in the outer membrane, which could titrate
out the destabilizing effect of colistin binding to LPS. In the
heteroresistant strain from patient G, a nonsynonymous mu-
tation was found in the lpxM gene. LpxM is responsible for the
addition of one of the secondary acyl chains to lipid A in En-
terobacteriaceae (49, 50). In K. pneumoniae, deletion of lpxM
contributes to susceptibility to antimicrobial peptides, includ-
ing colistin (51). It is possible that the mutation in lpxM alters
the acylation of lipid A, thereby making the strain more resis-
tant to colistin. To our knowledge, this is the first time that
mutations in yciM and lpxM have been found in K. pneumoniae
and linked to reduced susceptibility to colistin. Currently, we
cannot mechanistically explain why the mutated alleles of yciM
and lpxM are dominant over the wild-type alleles. Conceivably,
the presence of these alleles may interfere with the complex
regulation of LPS biosynthesis in Klebsiella (52).

The present study shows that heteroresistance to colistin is
present in a clonal population of ESBL-producing K. pneumoniae
strains that were isolated from ICU patients who had been ex-
posed to colistin. Our study highlights the multiple evolutionary
trajectories that can lead to colistin resistance in K. pneumoniae
and underscores the importance of monitoring the existence of
colistin-resistant subpopulations in diagnostic susceptibility test-
ing of K. pneumoniae.
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